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｜賴志煌教授：量子物理講義｜ 

【Chapter 6 Schrödinger Equation  

          for H atom】 

  

【6.1 Schrödinger Equation for H atom】 
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∵U is function of r, rather than x,y,z 

 1. Express U in terms of x,y,z 

 2. Express Schördinger Equation in terms of r,θ,φ, ( see 

fig 6.1 ) 

Owing to the symmetry of physical situation 

=>choose spherical polar coordinates. 

r = length of radius vector from O to P 

= 222 zyx   

θ= angle between radius vector and z axis 

=
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  ( zenith angle ) 

ψ= angle between the projection of radius vector in x-y plane and 
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the x axis 

=
x

y1tan    ( azimuth angle ) 

*In spherical polar coordinates, Schrödinger Equation 
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------(6.4) 

 solve eq(6.4) for φ => get three quantum number 

 

*A particle in a three-dimensional box needs three quantum 

numbers for its description 

∵there are three sets of B.C., φ must be zero at the walls of box 

in x,y,z. 

 

In H atom, the e’ motion is restricted by the inverse-square E field 

=> but e’ is nevertheless free to move in 3-D => need 3 quantum 

number. 
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【6.2 Separation of Variables】 

The advantage of writing Schrödinger Equation in spherical polar 

coordinates for H atom is that it may be separated into three 

independent eq.s, each involving only a single coordinate. 

i.e. we would like to have 
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 Schrödinger Equation 
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same constant, since they are functions of different variables. 

 

*It is convenient to call this constant me
2 

2

2

21
e

m









 



 4 

for right-hand side of eq(6.7), divided eq. by sin2θ 
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Again, we have an eq. in which different variables appear on each 

side => both sides equal to the same constant. This constant is 

called  1  
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=> φ can be separated into RΘΦ, only R is dependent on U.
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【6.3 Quantum Number】 

for Φ (eq(6.12)) =>    eim
Ae  

∵Φ need to be single value 

     2  

  2
 ee imim

AeAe  

  ,....3,2,1,0
e

m  
e

m ：magnetic quantum number 

 

for Θ(θ) (eq(6.13)) =>   is an integer equal to or greater than 

e
m  (set the max of 

e
m ) 

  ：orbital quantum number 

 

for R(r) (eq(6.14))  En can be “+” or 
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
  n=1,2,3,… 

same formula for energy levels of H atom in Bohr mode. 

n：principle quantum number 

n must be equal to or greater than 1  

=>=0,1,2,3,…,(n-1) 

 mmnl
R   

The wave functions R,Θ,Φ,φ are given in Table 6.1
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【6.4 Principle quantum Number (Quantization of 

energy) 】 

In planetary motion, two quantities are conserved 

－scalar total energy & vector angular momentum 

 

Classically, the total energy can be any value, but it must be 

negative if the planet is to be trapped in solar system. 

In Q.M. of H atom => the electron energy may have any positive 

value (corresponding to an ionized atom), the only negative 

values are 
2

1

n

E
E

n
  

=> n → Quantization of electron energy 

 

 

Figure 6.1 (see textbook)  (a) Spherical polar coordinates. (b)A line of constant zenith angle θ on a 

sphere is a circle whose plane is perpendicular to the z axis.(c)A line of constant azimuth angle φ is a 

circle whose plane includes the z axis. 
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Figure 6.2 (see textbook) The angleφand φ+2Π both identify the same meridian plane. 

Figure 6.3 (see textbook) The right-hand rule for angular momentum. 
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【6.5 Orbital Quantum Number (Quantization of Angular 

Momentum Magnitude) 】 

eq(6.14) for R(r) 
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E includes the e’ kinetic energy of orbital motion which should 

have nothing to do with its radial motion. 

E=kEradial+kEorbital+U 

 

Inserting this expression into eq(6.14) 
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 eq(6.19) is a differential eq. for R(r) that involves functions of 
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=>   1L   (=0,1,2,3,…,(n-1)) 

the angular momentum is quantized. 

 

*Resignation of Angular Momentum States 

=0,1,2,3,4,5,6,… 

   s,p,d,f,g,h,i,… 

d state has angular momentum  6)12(2   

4s => n=4, =0 

5d => n=5, =2 

Magnetic Quantum Number 

 

＊Orbital quantum number   determines the magnitude L of the 

e’ angular momentum. 

＊However, angular momentum is a vector → need to specify the 

direction 

＊ The way to determine the direction of L => right-hand rule(see 

fig(6.3)) 
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An e’ revolving about a nucleus is a minute current loop → 

magnetic dipole. 

=>when an e’ that possesses angular momentum interacts with an 

external magnetic B field. 

=>magnetic quantum number me specifies the direction of L by 

determining the component of L in the field direction. 

=>This phenomenon is space quantization. 

If B direction // z direction 

=> 
ez

mL  ,  ,...,2,1,0
e

m  

possible value of me for given   range from +  to - . 

=>number of possible orientations of the angular momentum L in 

the magnetic field is 2+1 

The space quantization of orbital angular momentum of H atom is 

shown in fig(6.4) 
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L can never be aligned exactly parallel or antiparallel to B 

∵Lz is always smaller than   1  

In the absence of an external magnetic field, the direction of z is 

arbitrary but L in any chosen direction is 
e

m . 

＊ Why is only one component of L quantized? 

L can never point in any specific direction but instead is 

somewhere on a cone in space such that its projection Lz is 
e

m . 

Were this not so, => uncertainty principle would be violated. 

 

If L were fixed in space => Lx,Ly,Lz had definite values => e’ 

would be confined to a definite plane. 

Ex. if L were in z direction => e’ would have to be in x-y plane 

(fig(6.5)) => ΔZ=0 => ΔP →∞ 

It’s impossible if it is to be part of H atom number. 

∵ only one component Lz & magnitude of L have definite 

value, and 
z

LL  , the e’ is not limited to a single plane (see 

6.5,6.6) => ΔZ uncertainty 

∵ the direction of L is not fixed (fig(6.6)) 

 average of Lx & Ly = 0 but 
ez

mL   
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Figure 6.4 (see textbook) Space quantization of orbital angular momentum. Here the orbital quantum 

number is l = 2 and there are accordingly 2l + 1 = 5 possible values of the magnetic quantum number ml, 

with each values corresponding to a different orientation relatives to the z axis 

 

 

Figure 6.5 (see textbook) The uncertainty principle prohibits the angular momentum vector L from 

having a definite direction in space 
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【6.7Electron Probility Density】 

 

Figure 6.6 (see textbook) The angular-momentum vector L precesses constantly about the z axis. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

In Bohr’s model：e’ revolves around the nucleus in a circular path 

.  

 
Figure 6.7 (see textbook) The Bohr model of the hydrogen atom in a spherical polar coordinates system. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 
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 the e’ would always be found a distance of r = n2a0 from 

nucleus and θ=90º, while ψ changes with time. 

Q.M.： 

(1) No definite values of r,θ or ψ can be given, only relative 

probabilities for finding e’ => wave nature of e’. 

(2) We can’t even think of e’ as moving around the nucleus in 

independent of time and varies form place to place. 

2222

 R  

   eim
Ae  

22*2

AeeA ee imim


 
 

The probability of finding e’ is independent of ψ  => probability 

density is symmetrical about the z axis. 

*
2

  for s state is a constant 

∵
2

  is also a constant => 
2

  is spherically symmetric for s 

state：it has the same value at a given r in all direction 

*e’ in other states do have angular preference. See fig(6.12) 

∵
2

  is independent of ψ, we can obtain a three-dimensional 

picture of 
2

  by rotating the representation about a vertical 

axis. 
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*For 2p state 1
e

m  => like doughnut in the equatorial plane 

centered at nucleus. The most probable distance = 4a0 = the radius 

of Bohr orbit for n=2. 

Similarly, 3d with 2
e

m , 4f with 3
e

m  

*Bohr model predicts the most probable location of e’ in one of 

several possible states in each energy level. 

 

 

Figure 6.9 Volume element dV in spherical polar coordinates. (source:wikipedia) 
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Figure 6.8 (see textbook) The variation with distance from the nucleus of  the radial part of the electron 

wave function in hydrogen for various quantum states. The quantity a0 = 4πε0ħ
2
/me

2
 =  0.053 nm is the 

radius of the first Bohr orbit. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

 

 

 

 



 17 

R depends on r and n,   

R is a max at r = 0 for all s states, which correspond to L = 0 

( ∵  = 0 ) 

The value of R = 0 at r = 0 for the states with   > 0. 

Probability of finding e’ probability of finding e’ in the 

infinitesimal volume element dV => dV
2

  

    drrddrdV sin  

=>p(r)dr of finding e’ in spherical shell between r & r+dr 

    dVRdrrp
222  

  
 


0

2

0

2222 sin dddrRr  

22 Rr  (∵ Θ & Φ are normalized function) 

 
 

Figure 6.10 (see textbook) The probability of finding the electron in a hydrogen atom in the spherical 

shell between r and r + dr from the nucleus is P(r) dr. 

Figure 6.11 (see textbook) The probability of finding the electron in a hydro gen atom at a distance 

between r and r + dr from the nucleus for the quantum states of Fig. 6.8. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 
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fig(6.11) => p(r)dr 

fig(6.8) => R 

p is not max at r = 0, as R is, but has its max a definite distance 

from it. 

 

The most probable value of r for s e’ = a0 the orbital radius of a 

gound-state e’ in Bohr model. 

However, average value of r for s e’ is 1.5a0 but average value 

of 
r

1
 is 

0

1

a
 

=> energy level for Q.M. = Bohr models

Curves are quite different 
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【6.8Radiative Transitions】 

In Bohr model, an atom dropping from Em to En 

 frequency ν of radiation emitted 

 
h

EE
nm


  

 

Time-dependent wave function Ψn in a state of quantum number n 

& energy En is the product of a time-dependent φn & time-varying 

function 

hE
nn

  
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nn

ne
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   
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nn
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**   

=> 









 


 dxexdxxx

t
E
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nnnn

nn


 **  





 dxx

nn
 *  

 x  is constant in time (∵
nn

 &*  are function of x) 

 The electron does not oscillate 

 No radiation 

 Q.M. predicts that a system in a specific quantum state does 

not radiate. 
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＊ consider e’ shift from one state to another, e.g. 

Ψ can exist in both state n & m => 

Ψ=aφn+bΨm 

aa* ≡ probability in state n 

bb* ≡ probability in state m 

initially a=1 & b=0  b=1 & a=0 a=1 & b=0 

while e’ is in either state => no radiation in the midst of transition 

from m to n 

 a, b are non-zero => EM waves produced 

  dxbabaxx
mnmn

  
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****  
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 dxbbaabax

mmmnnmnn
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mmmnn

nm   ***2*  
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
 dxeexba

tEi

m

tEi

n

nn   **
 

last two terms 

 











 
 dxbaabxt

EE
i

mnnm

nm  ****sin


 

State n 

Ground state 

State m 

Excited state 
State n 

excite radiate 

aa*+bb*=1 

excite radiate 
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for real part, it varies with time 

tt
h

EE
t

EE nmnm  2cos2coscos 






 








 


 

 e’ position oscillates at the frequency 

h

EE
nm


  

◎ When e’ is in state n or m the expectation value of the e’ 

position between these states, its position oscillates with ν. 

=>like electric dipole & radiates EM wavesν. 

 

Figure 6.13 (see textbook) Energy-level diagram for hydrogen showing transitions allowed by the 

selection rule △ l = ±1. In this diagram the vertical axis represents excitation energy above the ground 

state. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

 

 

 

 

 

 

 dxbaabxt
EE

mnnm

nm













 
 ****cos





 22 

【6.8 Selection Rules】 

Forν, we don’t need to know φn, φm, a, b 

But if we would like to know the chance a given transition will 

occur => we need to knowφn, φm, a, b 

If 



0*dxx

mn
 allowed transition 

= 0→forbidden transition 

In H atom => 3 quantum number needed to specify 

initial(n’, ' , '


m ) & final(n, ,


m ) states. 

 Allowed transition 0* 



dVu

mnmn  
  

(u represents either x, y or z) 

∵
 mn

  are known => 



dVu

mnmn

*

 
  can be calculated 

=> only the transition is allowed 

 

Figure 6.14 (see textbook) Two parallel metal plates exhibit the Casimir effect even in empty space. 

Virtual photons on any wavelength can strike the plates from the outside, but photons trapped between the 

plates can have only certain wavelengths. The resulting imbalance produces inward forces on the plates. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

1,0

1









m
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【6.9Zeeman Effect】 

Magnetic dipole in a magnetic field B 

 torque τ= uBsinθ = u×B 

Um, by definition  Um = 0 when 
2


   

 BuuBduBdU
m

  






 cossin
22

 

magnetic dipole tends to align itself with B 

The magnetic moment of the orbital e’ in H atom depends on L 

The magnetic moment of a current loop 

u=IA 

 

 
Figure 6.15 (see textbook) A magnetic dipole of moment u at the angle θ relative to a magnetic field B. 
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Figure 6.16 (see textbook) (a)Magnetic moment of a current loop enclosing area A. (b)Magnetic moment 

of an orbiting electron of angular momentum L. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

If e’ makes frev/s in a circular orbit of r 

=> I = -ef => u = -efπr2 

L = mvr = m(2πfr)r = 2πmfr2 

L
m

e
u












2
 －：negative charge 

(-e/2m)：gyromagnetic ratio 

cos
2

LB
m

e
U

m 







  

  1L  
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 magnetic energy B
m

e
mU

m 









2




 

m

e

2


：Bohr magneton 

uB = 9.274×10-24 J/T 

= 5.788×10-5 eV/T 

 In a magnetic field, the energy of a particular atomic state 

depends on 


m & n. 

 A state of total quantum number n breaks up into several 

substates when the atom is in a magnetic field. Their energy 

are slightly more or less than the energy of the state in the 

absence of field. 

 Individual spectral lines “splitting” into separate lines 

 Zeeman Effect 
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Figure 6.17 (see textbook) The normal Zeeman effect. 

※References:Modern Physics for scientists and engineers, Stephen T. Thornton Nonclassical Physics, RandyHarris.Quantum 

Physics of atoms, molecules,Solids,nuclei and Particles. Eisberg & Resnick 

 

The spacing of lines depends on magnitude of field 


m  have 12   values 

∴   split into 12   substates in magnetic field energy 

difference is uBB 

1,0 


 m  (selection rule) 

 spectral line from transition between 2 states of different 

  to be split into 3 components. 



 27 

＊Normal Zeeman Effect consists of splitting of a spectral line of 

ν0 into  
h

B
u

m

eB
B


001

4



  

02
   

h

B
u

m

eB
B


003

4



  

 

ex 6.4 

A sample of a certain element is placed in a 0.3T magnetic 

field & suitably excited. How far apart are the Zeeman 

components of 450nm spectra line of this element? 

Sol. 

m

eB




4
  




c
   

2




d
cd   

=> nmm
mc

eB

c
00283.01083.2

4

12

22




 




  

 


